BOYLE'S LAW

 Boyle's Law states that the Uôlfarbb of a gas varies inversely with its pressure if temperature is held constant. (If one goes up, the other goes down.) We use the formula:$$
P_{1} \times V_{1}=P_{2} \times V_{2}
$$

Solve the following problems (assuming constant temperature).

1. A sample of oxygen gas occupies a volume of 250 mL at 740 . tort pressure. What volume will it occupy at 800 . torr pressure?

$$
740.250-800 \mathrm{~V} \quad \text { Good to show work } \quad 23125 \mathrm{~mL}
$$

2. A sample of carbon dioxide occupies a volume of 3.50 liters at 125 kPa pressure. What pressure would the gas exert if the volume was decreased to 2.00 liters?
Show units of measurement $\quad 3.5 \cdot 125=2 P$
218.75 kPa
3. A 2.0 liter container of nitrogen had a pressure of 3.2 atm . What volume would be necessary to decrease the pressure to 1.0 atm ?

$$
6.4=
$$

4. Ammonia gas occupies a volume of $450 . \mathrm{mL}$ at a pressure of $720 . \mathrm{mm} \mathrm{Hg}$. What volume will it occupy at standard pressure?

$$
450 \cdot 720=760 \mathrm{~V}
$$

$$
426.3 \mathrm{~mL}
$$

5. A 175 mL sample of neon had its pressure changed from 75 kPa to 150 kPa .

What is its new volume?

$$
175 \cdot 75=150 \mathrm{~V}
$$

$$
87.5 \mathrm{~m}<
$$

6. A sample of hydrogen at 1.5 atm had its pressure decreased to 0.50 atm producing a new volume of 750 mL . What was its original volume?

$$
1.5 \mathrm{~V}=750 \circ .5 \quad 250 \mathrm{~mL}
$$

7. Chlorine gas occupies a volume of 1.2 liters at 720 torr pressure. What volume will it occupy at 1 atm pressure?

$$
1.2 \cdot 720=760 \mathrm{~V}
$$

1.1 L
8. Fluorine gas exerts a pressure of 900 . torr. When the pressure is changed to 1.50 atm , its volume is $250 . \mathrm{mL}$. What was the original volume?

$$
900 V=1140 \cdot 250
$$

CHARLES' LAW

Name \qquad
Charles' Law states that the volume of a gas varies directly with the Kelvin temperature. assuming that pressure is constant. We use the following formulas:

Solve the following problems assuming a constant pressure.

1. A sample of nitrogen occupies a volume of 250 mL at $25^{\circ} \mathrm{C}$. What volume will it occupy at $95^{\circ} \mathrm{C}$?
Again, try to show units $\quad 2 \frac{250}{98}=\frac{x}{368}$

$$
308.71 \mathrm{mc}
$$

2. Oxygen gas is at a temperature of $40^{\circ} \mathrm{C}$ when it occupies a volume of 2.3 liters. To what temperature should it be raised to occupy a volume of 6.5 liters?

$$
\frac{2.3}{313}=\frac{6.5}{x}
$$

$$
884 K
$$

3. Hydrogen gas was cooled from $150^{\circ} \mathrm{C}$ to $5 \overline{0}^{\circ} \mathrm{C}$. Its new volume is 75 mL . What was its original volume?

$$
\frac{75}{423}=\frac{x}{323}
$$

57.3 mL
4. Chlorine gas occupies a volume of 25 mL at $3 \overline{0} 0 \mathrm{~K}$. What volume will it occupy at
600 K ?

$$
\frac{25}{600}=\frac{x}{300}
$$

$$
12.5 \mathrm{~mL}
$$

5. A sample of neon gas at $50^{\circ} \mathrm{C}$ and a volume of 2.5 liters is cooled to $25^{\circ} \mathrm{C}$. What is the new volume?

$$
\frac{2.5}{323}=\frac{x}{298}
$$

6. Fluorine gas at $30 \overline{0} \mathrm{~K}$ occupies a volume of $50 \overline{0} \mathrm{~mL}$. To what temperature should it be lowered to bring the volume to $30 \overline{\mathrm{~mL}}$?

$$
\frac{500}{300}=\frac{300}{x}
$$

180 K
7. Helium occupies a volume of 3.8 liters at $-45^{\circ} \mathrm{C}$. What volume will it occupy at $45^{\circ} \mathrm{C}$?

$$
\frac{3.8}{228}=\frac{x}{318}
$$

8. A sample of argon gas is cooled and its volume went from $38 \overline{0} \mathrm{~mL}$ to $25 \overline{0} \mathrm{~mL}$. If its final temperature was $-55^{\circ} \mathrm{C}$, what was its original temperature?

$$
\frac{380}{x}=\frac{250}{218}
$$

$$
\begin{aligned}
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \text { or } V_{1} \times T_{2}=V_{2} \times T_{1} \text { Moi) be in } \\
& K={ }^{\circ} \mathrm{C}+273
\end{aligned}
$$

OMBINED GAS LAW

\qquad
In practical terms, it is often difficult to hold any of the variables constant. When there is a change in pressure. volume and temperature, the combined gas law is used.

Complete the following chart.

DALTON'S LAW OF
 PARTIAL PRESSURES

Dalton's Law says that the sum of the individual pressures of all the gases that make up a mixture is equal to the total pressure or: $P_{T}=P_{1}+P_{2}+P_{3}+\ldots$ The partial pressure of each
gas is equal to the mole fraction of each gas x total pressure.

$$
P_{T}=P_{1}+P_{2}+P_{3}+\ldots \text { or } \frac{\text { moles gas }_{x}}{\text { total moles }} \times P_{T}=P_{x}
$$

Solve the following problems.

1. A 250 mL sample of oxygen is collected over water at $25^{\circ} \mathrm{C}$ and 760.0 torr pressure.

What is the pressure of the dry gas alone? (Vapor pressure of water at
$25^{\circ} \mathrm{C}=23.8$ torr) \quad How did you calculate this? (Vapor pressure of water at
2. A 32.0 mL sample of hydrogen is collected over water at $20^{\circ} \mathrm{C}$ and 750.0 torr $2 \overline{0}^{\circ} \mathrm{C}=17.5$ torr)

$$
32 \cdot \frac{732.5}{293} \cdot \frac{273}{760}
$$

3. A 54.0 mL sample of oxygen is collected over water at $23^{\circ} \mathrm{C}$ and 770.0 torr pressure, What is the volume of the dry gas at STP? (Vapor pressure of water at $23^{\circ} \mathrm{C}=21.1$ torr)

$$
54 \cdot \frac{770}{296} \cdot \frac{273}{760}
$$

4. A mixture of 2.00 moles of $\mathrm{H}_{2}, 3.00$ moles of $\mathrm{NH}_{3}, 4.00$ moles of CO_{2} and 5.00 moles of N_{2} exerts a total pressure of $800 \overline{0}$ torr. What is the partial pressure of each gas?
5. The partial pressure of F_{2} in a mixture of gases where the total pressure is 1.00 atm 300. torr. What is the mole fraction of F_{2} ?

$$
300 \text { torr }=760 \text { torr } e x
$$

\qquad
Use the Ideal Gas Law below to solve the following problems.

$$
\begin{aligned}
P V=n R T
\end{aligned} \text { where } \begin{aligned}
& \mathrm{P}=\text { pressure in atmospheres } \\
& \mathrm{V}=\text { volume in liters } \\
& \mathrm{n}=\text { number of moles of gas } \\
& \mathrm{R}=\text { Universal } \mathrm{Gas} \text { Constant } \\
& 0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K} \\
& \\
& \\
& \mathrm{~T}=\text { Kelvin temperature }
\end{aligned}
$$

1. How many moles of oxygen will occupy a volume of 2.5 liters at 1.2 atm and $25^{\circ} \mathrm{C}$?
> .123 moles

$$
2.5 \cdot 1.2=298 \cdot R \cdot N
$$

2. What volume will 2.0 moles of nitrogen occupy at 720 torr and $2 \overline{0}^{\circ} \mathrm{C}$?
\qquad $.947 \cdot V=293 \cdot R \cdot 2$
3. What pressure will be exerted by 25 g of CO_{2} at a temperature of $25^{\circ} \mathrm{C}$ and a volume of $50 \overline{\mathrm{DL}}$? $2.77 \mathrm{~atm} \quad \frac{25}{12.32}: .568 \mathrm{~g} \quad$ P. $5=.568 .298 \cdot \mathrm{R}$ 5 L
4. At what temperature will 5.00 g of Cl_{2} exert a pressure of 900 . torr at a volume of 750 mL ? 10.8 K

$$
143 \cdot 7.5 \cdot 1.2 \cdot R \cdot V
$$

5. What is the density of NH_{3} at $80 \overline{\mathrm{O}}$ torr and $25^{\circ} \mathrm{C}$? . $730 \mathrm{atg} / \mathrm{L}$

$$
1.05 \mathrm{~atm} \cdot \frac{.0821 \mathrm{~atm} \mathrm{tm}^{\mathrm{L}}}{\mathrm{~mol}} \cdot \frac{1}{298}
$$

6. If the density of a gas is $1.2 \mathrm{~g} / \mathrm{L}$ at 745 . torr and $20^{\circ} \mathrm{C}$, what is its molecular mass? $29 \mathrm{~g} / \mathrm{mol} \frac{.98 \mathrm{ak}}{.0821 \frac{\mathrm{kghg}}{\mathrm{molk}} \cdot 293 \mathrm{~K}}=\frac{04075}{\mathrm{~K}} \cdot \frac{112 \mathrm{~g}}{.04075}$
7. How many moles of nitrogen gas will occupy a volume of 347 mL at 6680 torr and $27^{\circ} \mathrm{C}$? \qquad
8. What volume will 454 grams (1 lb) of hydrogen occupy at 1.05 atm and $25^{\circ} \mathrm{C}$? 5240. 2
9. Find the number of grams of CO_{2} that exert a pressure of 785 torrs at a volume of 32.5 L and a temperature of $32^{\circ} \mathrm{C}$.
10. An elemental gas has a mass of 10.3 g . If the volume is 58.4 L and the pressure is 758 torrs at a temperature of $2.5^{\circ} \mathrm{C}$, what is the gas?

\qquad Date \qquad Class \qquad

13-4 Practice Problems

1. What volume would be occupied by $100 . \mathrm{g}$ of oxygen gas at a pressure of 1.50 atm and a temperature of $25^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& 3.13 \mathrm{~mol} 0.082 \cdot \frac{(25+273 \mathrm{k})}{1.5 a+\mathrm{m}}
\end{aligned}
$$

2. An air-filled balloon has a volume of 225 L at 0.94 atm and $25^{\circ} \mathrm{C}$. Soon after, the pressure changes to 0.99 atm and the temperature changes to $0^{\circ} \mathrm{C}$. What is the new volume of the balloon?

$$
\frac{1.26 \mathrm{~atm} \cdot 1.25 \mathrm{~L}}{.062 .30 \mathrm{~atm}}: 0821
$$

3. A gas confined in a $515-\mathrm{cm}^{3}$ contatmer exerts a pressure of 107.4 kPa at $38.6^{\circ} \mathrm{C}$. At what Celsius temperature will it exert a pressure of 635.7 kPa if it is placed into a $644-\mathrm{cm}^{3}$ container? ($1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$)

$$
\begin{aligned}
& \frac{107.4 .515}{311.8}=\frac{635.7 .644}{2307.82-273}=2034.82^{\circ} \mathrm{C}
\end{aligned}
$$

4. A balloon is inflated with 0.24948 of helium to a pressure of 1.26 atm . If the desired volume of the balloon is 1.250 L , what must the temperature be in ${ }^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \frac{1.26 a t \mathrm{tm} \cdot 1.251}{0623 \mathrm{mal}} \cdot .0821 \\
& \text { welders scot k }
\end{aligned}
$$

5. A welder's acetylene tank has a volume of 75.0 L. It is stored at a temperature of $23.24^{\circ} \mathrm{C}$ and has a pressure of 7667 kPa . How many moles of acetylene are in the tank?

6. How many grams of argon would it take to fill a light bulb with a volume of 0.475 L at STP?
$.0212 \mathrm{~mol} \cdot 39.45 \mathrm{~g}$
7. Dry ice is carbon dioxide in the solid state. 1.28 grams of dry ice are placed into a 5.00 L evacuated chamber that is maintained at $35.1^{\circ} \mathrm{C}$. What is the pressure in the chamber in kPa after all the dry ice has sublimed into CO_{2} gas?

$$
\frac{(\mathrm{atm})(.251)}{(.0821)(273)} \approx \begin{aligned}
& .011 \\
& \mathrm{~mol}
\end{aligned}
$$

8. A sample of Br_{2} gas is loaded into an evacuated demonstration bottle at STP. The volume of the bottle is 0.25 L . How many moles of Br_{2} gas will be contained in the bottle?

$$
1 \mathrm{~atm} \cdot \frac{.25 \mathrm{~L}}{.0821} .273 \mathrm{k}
$$

9. A sample of gas occupies (0.3088 m^{3} at no l B_{2} temperature of 325 K and a pressure of 149 kPa . Calculate the number of moles of the gas that are present. Note; $1 \mathrm{~m}^{3}=1000 \mathrm{~L}$

$$
\frac{(1.47)(308)}{(10821)(325)} \frac{\approx 149 \mathrm{kPa}}{101.3 \mathrm{KPa}} \pi / \sqrt{1.47}
$$

10. What pressure is exerted by 0.625 mole of a gas in a 45.4 L container at $-24.0^{\circ} \mathrm{C}$?

13-2 Practice Problems

$$
\begin{aligned}
& \frac{109 \mathrm{kp}}{101.85 \mathrm{kp}} \\
& \frac{162 \mathrm{~km}}{4 \mathrm{flomil}}
\end{aligned}
$$

1. The air pressure for a certain the is 109 kPa . What is this present in atmospheres? 1008 am
2 The ais pressure inside a submarine is 0.62 atm . What would be the height of a column of mercury balanced by thus pressure? $[4.70 \mathrm{~mm}$
The weather abs gees me shoo
1.0761 m .76 3nathessure as 1.07 atm What is this Atmospheric pressure in mos $\mathrm{Hg}^{2} / 813 \mathrm{mmH} / \mathrm{H}$
$753.7 \mathrm{anHg}^{4}{ }^{4}$ in New Medico is performed at an atmospheric pressure of 758.7 mm Hg . What is this pressure in atm? 991361 m
2. A bag of potato chips is sealed in a factory 26.1.5annty. 5. A bag of potato Che atmospheric pressure at

760 mart

$101,325-99820$
6. The same bag of potatoctups from Problem 5 is shipped to a town in Colorado, where the atmospheric pressure is 99.82 KPa . What is the difference (in Pa) between the pressure in the bag and the atmospheric pressure of the town? \qquad
7. The pressure gauge on a compressed air

$$
\frac{43.216 / \mathrm{in}^{2}}{14.716 / \mathrm{in}^{2}}
$$

$34.8 / 6 / \mathrm{m}^{2}$. 10.375×5 an $34.8 \mathrm{lb} / \mathrm{in}^{2}$. What is the pressure $14.716 / \mathrm{Nh} \mathrm{kPa}$ 240. Ked

9. A gas container is fitted with a manometer. The level of the mercury is 15 mm lower on the open side. Using a laboratory barometer, you find that atmospheric pressure is 750 mm Hg . What is the prosure in atmospheres, of the gas in the container? 0.97 a 1 m
10. A sacker bath is attached to an open espied manometer. The menus level in the mamoureter is 10 mas higher on the side attactrod to the ball than on the waste
If open to the atmosphere Atrosostienic powsurv has already been determined to te 770 man its What is the pas prosulue in the ball | 1612 of 10 old
11. Ope end of an opeti-Enden imappomet is connected to a canister filled with a gas at * posture of $7 / 10 \mathrm{mmm}$ Hf: The mercury tevet on the side open to the atmosphere ts 11.2 mm higher than on the side connected to the canister. What is the atmospheric pressure in $\mathrm{mm} \mathrm{H}_{8} \mid 759.8$ man $\left.{ }^{\prime} 7\right\rangle$
Suppose you are measuring the pressure inside a scaled cabinet using an openended manometer The atmospheric pressure is 7624 man Hg_{8} if the mercury level on the side open to the atmosphere is 3.6 mm higher than on the side attached to the cabinet, what is the pressure inside the cabinet in units of $\& P Q \geqslant O / 1 Y P_{5}$
13. The U-tube of a manometer is 284 cm tall. With both ends open, it is the until the mercury level in each tube is 13.2 cm from the top. What is the largest difference in pressure this manometer can measure in units of mm Heft $\sqrt[64 m]{ }+1 /$
14. A manometer contains a sample. The
nitrogen gas at a pressure of 88.3 KPa . level of mercury in the U-tube is 12.8 mm lower on the end open to the atmosphere. What is the atmospheric pressure in $\mathrm{KPa} ? / \mathrm{Q}_{0.0} / \mathrm{P} /$
15. One end of an open ended manometer is connected to a canister of unknown gas. The atmospheric posture is 103 atm . The mercury level is 186 mm higher in the U tube on the side open to the atmosphere than on the side attached to the canister. What is the presume of the gas in mom Hg?

13-3 Prat Dato
 ens

\qquad Class \qquad

1. A gas occupies a volume of 458 mL at a pressure of 1.01 kPa and temperature of 295 K . When the pressure is changed, the no change in test 477 mL . If there has been pressure? (10)
2. A gas $=\quad .970, k \mathrm{kPa}$ pionsiure of 1.03 atm and a temperature of 293 K . What volume will the gas occupy if the pressure changes to 0.980 atm and the temperature remains unchanged?

$$
\begin{aligned}
& \text { (1.0 } 04)(2.45)=.98 x+ \\
& (2580
\end{aligned}
$$

3. The cylinder of a car's engine has a volume of 0.6250 L when the piston is at the bottom of the cylinder. When the piston is at the top of the cylinder the volume is 0.0600 L . If the cylinder is filled with air at an atmospheric pressure of 765.1 mm Hg when the piston is at the bottom, what is the pressure in units of kPa when the piston is at the top of the cylinder? $(765.1)(.625 L)=.600 \times$ $(7970)(101.325) / 1760 \sqrt[2]{1063 \mathrm{KPa}}$
4. A discarded spray paint can ẹontainsonlya small volume of the propellant gas at a pressure of $34,470 \mathrm{~Pa}$. The volume of the can is 473.18 mL . If the can is run over by the garbage truck and flattened to a volume of 13.16 mL , what is the pressure in Pa assuming the can doesn't leak?

$$
\begin{aligned}
& (34470)(473.18)=13.16 \times \\
& 1=1.239 \cdot 10^{6} \mathrm{kPa}
\end{aligned}
$$

5: A sample of 70.0 tor argon gas is stored in a cylinder at a room temperature of $23.8^{\circ} \mathrm{C}$ and a pressure of $78.6 \mathrm{lb} / \mathrm{in}^{2}$. The sample is transferred completely to another 2.8 L cylinder. Several hours after the transfer, the second cylinder has also attained room temperature. What is the pressure in the

$$
\begin{aligned}
& \text { second cylinder in units of } \mathrm{kPa} \text { ? } \\
& \begin{array}{l}
\text { second cylinder in unis of } \\
(778,6)(10)=2.8 x \\
280.7 \times \frac{101.325}{14-7}=1.9 \cdot 10^{4} \\
\mathrm{KP}
\end{array} \\
& \begin{array}{l}
(778.6)(10)=2.8 x \\
280.7 \times \frac{101.35}{14-7}=\begin{array}{c}
1.9 \cdot 10^{4} \\
K P_{6}
\end{array}
\end{array}
\end{aligned}
$$

6. What will be the volume of a gas sample at 309 K if its volume at 215 K is 3.42 L ? Assume that pressure is constant.

$$
\frac{3.42}{21.5}=\frac{x}{30^{4}}
$$

7. A gas sample at $83^{\circ} \mathrm{C}$ occupies a volume of $1400 \mathrm{~m}^{3}$. At what temperature will it occupy $1200 \mathrm{~m}^{3}$?

$$
x=\frac{1200 \cdot 356}{1400}, 335 k
$$

8. A tank of compressed CO_{2} has a temperature of $23.6^{\circ} \mathrm{C}$ and a volume of 31.4 L . The CO_{2} is completely transferred into a smaller tank that has a volume of 25.0 L . Assuming none of the CO_{2} escapes during the transfer, what is the temperature of the CO_{2} in the smaller tank if the temperature is lowered to achieve the same pressure as in the larger tank?

$$
\frac{25-296+6}{31.4 \mathrm{~L}} \quad 236 \mathrm{~K}=38.9 \mathrm{C}
$$

9. A tube of mercury at a room temperature of $22: 4^{\circ} \mathrm{C}$ has a volume of 10.6 mL between the sealed end of the tube and the mercury. The sun rises and shines through a window on the tube and warms it to $27.8^{\circ} \mathrm{C}$. If the atmospheric pressure remains constant, what is the new volume between the sealed end of the tube and the mercury?

$$
\frac{106}{295.4}=\frac{x}{986.85}=10.8 \mathrm{ml}
$$

10. A gas occupies $0.105 \mathrm{dm}^{3}$ at 100 . K. At what Celsius temperature will its volume be $0.140 \mathrm{dm}^{3}$? Assume that pressure

$$
\begin{gathered}
\frac{.105}{100}=.140 \mathrm{dm}^{3} 1 T_{2} \\
133.3-273 \\
1=-140^{\circ} \mathrm{C}
\end{gathered}
$$

13-3 Practice Problems (continued)

11. At $75^{\circ} \mathrm{C}$, a gas has a volume of $3.22 \mathrm{dm}^{3}$. What volume will it occupy at 75 K ?

$$
\frac{3.22}{348}=\frac{x}{75} \quad .069 \mathrm{dm}^{3}
$$

12. A gas at $300 . \mathrm{K}$ occupies $6.50 \mathrm{dm}^{3}$. What will its volume be at 250 . K ?

$$
\frac{6.5}{300}=\frac{x}{250}
$$

13. What is the pressure of a mixture of helium, nitrogen, and oxygen if their partial pressures are $600 . \mathrm{mm} \mathrm{Hg}$, 150. mm Hg , and 102 mm Hg ?

$$
\begin{aligned}
& 600+150+102 \\
& =852 \mathrm{mmHty}
\end{aligned}
$$

14. A flask contains a mixture of hydrogen and oxygen. The pressure being exerted by these gases is 785 mm Hg , as determined by a manometer. If the partial pressure of the hydrogen in the mixture is 395 mm Hg , what is the partial pressure of the oxygen?

$$
\begin{aligned}
& 785 \mathrm{~mm}-395 \mathrm{mmg} \\
& =390 \mathrm{~mm} \mathrm{Hg} \\
& \hline
\end{aligned}
$$

15. An environmental testing lab uses a pump and cylinder to collect a sample of air near a leaking natural gas line. The lab finds the total pressure in their sample cylinder is 776.134 mm Hg . Analyzing the sample, they find it contains oxygen, nitrogen, and methane. What is the partial pressure of the methane in units of Pascal if the partial pressure of oxygen is 253.948 mm Hg and the partial pressure of nitrogen is 515.390 mm Hg ?
16. The barometer shows the atmospheric pressure to be 762 mm Hg . What is the partial pressure of nitrogen if nitrogen makes up 78 percent of the air?

$$
\begin{aligned}
& 762 . .78 \\
& =510 \mathrm{mra}+15
\end{aligned}
$$

17. What partial pressure of oxygen is a scuba diver breathing if the total pressure is 6.3 atm , and 20 . percent of the air is oxygen?

$$
6.3=.2
$$

18. What is the atmospheric pressure if the partial pressures of nitrogen, oxygen, and argon are $77.75 \mathrm{kPa}, 19.94 \mathrm{kPa}$, and 1.99 $\mathbf{k P a}$, respectively?

$$
\begin{aligned}
& 77.75+19.94+1.99 \\
& =79.68 \mathrm{KPa}
\end{aligned}
$$

19. The gases carbon dioxide, oxygen, and argon are mixed in a container. All gases have the same partial pressure, and the total pressure of the container is 32,680 Pa. What is the partial pressure of argon?

20. The partial pressure of water vapor in a greenhouse is 139.0 mm Hg , which is 18 percent of the total pressure. What is the total pressure in the greenhouse?

$$
6.976 \cdot \frac{101.325}{760} \cdot \frac{1000 p}{1 k P}
$$

Chapter 13

$$
=906.054 \mathrm{~Pa}
$$

