Pre-Lab Study Questions 1. Where are the valence electrons in an atom? In the outermost shell. The valence electrons are not just for to be in outer shell 2. How are positive and negative ions formed? They are formed when an atom takes an electron from atom. The atom with less electron is the positive ion the electron with more electrons are regative ions? 3. How do subscripts represent the charge balance of ions? The subscripts represents how much of each element is required to balance the charge of the atom but.		Team		
1. Where are the valence electrons in an atom? In the obtermost shell. The valence electrons are not just for to be in outer shell 2. How are positive and negative ions formed? They are formed when an atom takes an electron from atom. The atom with less electron is the positive ions? Electron with more electrons are regative ions? The subscripts represent the charge balance of ions? The subscripts represents how much of each element is required balance.	Instructor	*		
The valence electrons are not just for to be in outer shell 2. How are positive and negative ions formed? They are formed when an atom takes an electron from atom. The atom with less electron is the positive ion, the electron with more electrons are regative ions? 3. How do subscripts represent the charge balance of ions? The subscripts represents how much of each element is required to balance the charge of the atom out.	Pre-Lab Study Questions			
2. How are positive and negative ions formed? They are formed when an atom takes an electron from atom. The atom with less electron is the positive ion to electron with more electrons are regative ions? 3. How do subscripts represent the charge balance of ions? The subscripts represents how much of each element is requite balance the charge of the atom out.	1. Where are the valence electrons in an		good a	nswers, mostly corr
They are formed when an atom takes an electron from atom. The atom with less electron is the positive ion to electron with more electrons are regative ions? 3. How do subscripts represent the charge balance of ions? The subscripts represents how much of each element is required to balance the charge of the atom but.	The valence electrons are not ju	st for to be in outer s	shell	
The subscripts represent the charge balance of ions? The subscripts represents how much of each element is veg, to balance the charge of the atom but.	They are formed when ar	s election is	the macit	thon from an
	election with more electro	ns are negati	Ve ivaci	
	3. How do subscripts represent the charge The subscripts we presents w	e balance of ions?	re ions;	
4. Why are electrons shared in covalent compounds? Electrons are shared in covalent compounds because the place	3. How do subscripts represent the charge The subscripts represents he	e balance of ions?	re ions;	

Electron-Dot Structure	Loss or Gain of Electrons	Electron Arrangement of Ion	Ionic Charge	Symbol of Ion	Name of Ion
Na•	lose 1e ⁻ 2-8		1+	Na ⁺	sodium ion
• N •	gain 3e ⁻	2-8	3–	N ³⁻	nitride ion
A1°	105e 3e-	2-8	3+	A13+	Qluminum
: : 	gainle	5-8-8	-	C1-	Chloride
Ca.	lose Ze	2-8-8	2+	Ca2+	(alcium
	gain le	2-8	2-	0,2-	0xida

try putting the correct charges of the electrons

dot diagrams are correct

B.2 Formulas of ionic compounds

Name	Positive Ion	Negative Ion	Formula
Sodium chloride	Na ⁺	CI ⁻	NaCl
Magnesium chloride	Mglt	· Cr	MgClz
Calcium oxide	Caz	02-	CaD
4\ -3 Lithium phosphide	L'.+	P3-	Li3P
~? ~? Aluminum sulfide	· A/3+	52-	Al ₂ S ₃
+2 -3 Calcium nitride	Cazt	N3-	CasNz

There are some work on the side to show that you have been working on this correctly

B.3 Names of ionic compounds

nice job writing cation/anion on the top to indicate which ones are which

C.3 Names of ionic compounds

Cu ₂ S	Copper(I) sulfide
Fe_2O_3	Iron (III) Oxide
CuCl ₂	(Opper (11) Chlorida
FeS	Iron Sulfield
Ag ₂ O	Silver Oxich
FeBr ₂	Iron (11) Bromide

Looks like you listened when writing the compound names when a metal is combined with a nonmetal

D.2 Formulas of ionic compounds

Name	Positive Ion	Negative Ion	Formula
Potassium carbonate	K ⁺	CO ₃ ² -	12203
Sodium nitrate	Nat	NO3-2	Na NO:
Calcium bicarbonate	Carr	H CO3	Ca(N(O3)2
Aluminum hydroxide	AlT3	OH-	A1 (OH),
Lithium phosphate	Lit	P04-3	Li 3 P04
Potassium sulfate	Kt	504-2	K2504

D.3 Names of ionic compounds

Using the polyatomics chart helped with this section

CaSO ₄	Calcium sulfate
Al(NO ₃) ₃	Aluminum Nitrate
Na ₂ CO ₃	Sodium carbonate
MgSO ₃	Magnesium sulfate
Cu(OH) ₂	Copper hydrixide
Mg ₃ (PO ₄) ₂	Magnesium phosphate

Reference to the polyatomics chart

Laboratory 7

Report Sheet - Lab 7

E.2 Physical properties

Compound	Appearance	Density	Melting Point

E.3 Electron-dot structures

Overall answers are

correct and the po				
Compo	und	Electron-Dot Structure	Name is fully complete	
H ₂ O		H: 0:	Could also be hydrogen dioxide	
SBr ₂		Br : 5: : Br	Sulfur bromide	
PCl ₃		·CI:P:CI:	phosphorous	
CBr ₄		:81: C:81:	Carbon tetrabromide	
SO ₃		0:5:0	Sulfur Trioxide	

Overall on this section, the dot diagrams are spot on

F. Electron Dot Structures and Molecular Shape

Some parts on this were confusing but managed to answer

Formula	1. Electron dot Structure	2. Total number of electron groups	3. Electron geometry	4. Bond angle	5. Number of bonded atoms	6. , Molecular geometry	7. Polar or nonpolar?
ЩO	H:Ö:	6	tetvahedral	(o\$	7	bent	polar
SBr ₂	:Br:5:Br:	Ц	tedrahedial	105	3	bent	pdar
NCl ₃	:CI:N:CI:	4	fet rained and	(07.5	7	trighal pyramid	polar
CBr ₄	BCCIBY:	4	tetrahedra)	(७५	5	tetrahodon	non polar
SO ₃	0:5:0:	3	trisonel trisonel	(70)	4	trigonal planu	polar
CO ₂	:0:0:0:	7	linear	(40	3	linear.	polar
NO ₃	.O.M. o.	Ц.	fetraledai	いつごく	Ч	trigonal pyramaid	-polar
CHCl ₃	H:C: (1	4	Jetvaledica	1001	S	tetraledvoi	Moder

Scanned by CamScanner